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Abstract Habitat suitability maps are commonly created

by modeling a species’ environmental niche from occur-

rences and environmental characteristics. Here, we intro-

duce the hyper-envelope modeling interface (HEMI),

providing a new method for creating habitat suitability

models using Bezier surfaces to model a species niche in

environmental space. HEMI allows modeled surfaces to be

visualized and edited in environmental space based on

expert knowledge and does not require absence points for

model development. The modeled surfaces require rela-

tively few parameters compared to similar modeling

approaches and may produce models that better match

ecological niche theory. As a case study, we modeled the

invasive species tamarisk (Tamarix spp.) in the western

USA. We compare results from HEMI with those from

existing similar modeling approaches (including BioClim,

BioMapper, and Maxent). We used synthetic surfaces to

create visualizations of the various models in environ-

mental space and used modified area under the curve

(AUC) statistic and akaike information criterion (AIC) as

measures of model performance. We show that HEMI

produced slightly better AUC values, except for Maxent

and better AIC values overall. HEMI created a model with

only ten parameters while Maxent produced a model with

over 100 and BioClim used only eight. Additionally, HEMI

allowed visualization and editing of the model in envi-

ronmental space to develop alternative potential habitat

scenarios. The use of Bezier surfaces can provide simple

models that match our expectations of biological niche

models and, at least in some cases, out-perform more

complex approaches.

Keywords: Habitat suitability modeling � Species

distribution modeling � Tamarix � Tamarisk �
Species niche � Bezier curves

Introduction

Habitat suitability modeling, which is closely related to

species distribution modeling, is used to understand and

predict the potential distribution of a species and is used in

many areas of conservation and restoration ecology (Elith

and Leathwick 2009). Habitat suitability modeling can

provide critical insight into the potential spatial and tem-

poral distribution of a species’ population (Franklin 2009;

Penman and others 2010), how species respond to novel

environments (Hinojosa-Diaz and others 2009), locating

rare and endangered species (Guisan and others 2006),

exploring the distribution of invasive species (Morisette

and others 2006; Evangelista and others 2008; Jarnevich

and others 2011), and defining conservation priority areas

(Fuller and others 2008).

In most cases, habitat suitability models integrate data

on the observed location (i.e., presence points) of a species

with environmental data (e.g., temperature, precipitation,

slope, soil type) to create a model of the species’ niche in

environmental space and then convert the results to
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geographic space as a raster (or grid), which can be used to

generate a final suitability map (Franklin 2009). This

modeling approach assumes that the variables chosen for

the environmental data are the most influential ones.

Based on fundamental ecological niche theory (Hutch-

inson 1957; MacArthur and Wilson 1963), we could create

a niche model using a continuous envelope that inside

contains the environmental conditions under which a spe-

cies could potentially exist. Outside the envelope, condi-

tions are unsuitable for the species to persist. We would

typically expect a species to be absent outside its niche in

environmental space, and the habitat quality for that spe-

cies to increase moving from the boundaries toward the

optimal point within the niche (Lomolino and others 2006).

At least for plant habitat suitability, we might expect the

shape of this envelope to be a relatively continuous curve,

such as the relationship between seed germination and

water stress (Maraghni and others 2010).

Many modeling packages do not provide visualization of

the model in environmental space, but only in geographic

space (Graham and Hijmans 2006). This can prevent experts

from evaluating whether the model responds as expected

based on their knowledge of the species. Additionally, many

habitat suitability modeling algorithms do not allow modi-

fication of the niche model based on expert knowledge, but

rely solely on auto-detected correlations between species’

presence observations and environmental variables. This

relies heavily on the assumption that species are inhabiting

the full extent of their potential habitat, an assumption that is

often violated with invasive species (Elith and Leathwick

2009). The ability to modify these models given expert

information would allow researchers to refine their predic-

tions to better reflect knowledge about what environmental

factors limit a species distribution.

Our objective was to devise a new modeling approach

that (1) automatically provides model optimization and

allows for model editing; (2) provides a visualization of the

model in environmental space; (3) uses only presence

points; (4) creates the simplest (i.e., most parsimonious)

model to effectively describe a target species’ relationship

with the environment; and (5) provides models that are

continuous in environmental space. In this paper, we

introduce the hyper-envelope modeling interface (HEMI),

an approach that uses Bezier surfaces in a hyper-volume to

model a species niche. We provide an overview of the

HEMI modeling approach and then compare its perfor-

mance with three other similar approaches: BioClim,

BioMapper, and Maxent. We developed habitat suitability

models for tamarisk (Tamarix sp.), a plant that is invasive

to the western USA. Tamarisk is a facultative phreatophyte

that desiccates flood plains and water tables (Blackburn

and others 1982; Pinay and others 1992). Because it is a

specialist species limited largely by water availability and

cool temperatures, tamarisk distributions have been suc-

cessfully modeled at multiple spatial and temporal scales

(Morisette and others 2006; Evangelista and others 2008;

Jarnevich and others 2011).

Methods

Hyper-Envelope Modeling Interface (HEMI)

HEMI is similar to other habitat suitability modeling

approaches in that it first extracts environmental values for

each occurrence point, then creates a model within the

environmental space, and finally allows the creation of

predictive maps based on this model. However, HEMI cre-

ates the model in an interactive manner that allows the

modeler to view and modify the process at each step. HEMI

provides two-dimensional histograms of the interaction

between N environmental characteristics from the area

sampled for the species of interest, where N can range from

two to five environmental layers. The histograms capture the

available habitat, such as that for tamarisk, based on envi-

ronmental characteristics such as minimum monthly tem-

perature and mean annual precipitation (Fig 1). The

histograms show the relative availability of combinations of

environmental characteristics in the sampled area using a

color gradient. The environmental characteristics are then

overlaid with a two-dimensional histogram showing the

density of occurrence points in environmental space

Fig. 1 A two-dimensional histogram showing the amount of area

within the western USA that contains each combination of the

environmental characteristics. Green represents that a small amount

of area is available those combinations of characteristics, such as the

small number of areas with over 3,000 mm of annual precipitation,

and white and red indicate a large amount of area is available such as

the large areas of relatively dry and cold conditions. Similarly, white

represents environmental conditions where there were a large number

of tamarisk occurrences while black represents a small number of

occurrences
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(Figs. 1; 2a). To find a rough approximation for the model,

HEMI first uses a kernel density smoother with a linear

kernel function to compute an overall potential density

estimate for each pixel in the environmental space

(Fig. 2b, c). Contour lines are added at different densities

that can be specified by the user. For this study, we used

contour lines at 10 and 90 % of the maximum density

(Fig. 2d). The habitat suitability model is then described by

Bezier curves with control points based on the contour lines

(Fig. 2e). To find the final model, a function is run to search

for new positions of the control points that improve the

model using the area under the curve (AUC) metric (Fig. 2f).

At this point, the user can create a map of the predicted

habitat suitability or edit the model. Feedback to the user is

provided through display of the receiver operator curve

(ROC) and associated AUC values. The entire process can be

completed one step at a time or automatically. HEMI was

implemented in the Java programming language as an

extension for the software package BlueSpray from

SchoonerTurtles, Inc. (see SchoonerTurtles.com).

The key to HEMI’s ability to model habitat suitability is

the use of Bezier curves. Bezier curves can be used for

modeling geometric surfaces in two- and three-dimensional

spaces and are related to spline curves (Galvez and others

2007). Bezier curves allow control points to define the

shape of the curves with greater flexibility than traditional

polynomials. These curves use an independent parameter, t,

which ranges from 0 to 1 as the curve moves from a

starting control point to an ending control point. Additional

control points are added to change the shape of the curve.

A third-order Bezier curve is defined by four control

points: the two end points of the curve (P0 and P3) and two

control points that are not on the curve (P1 and P2) (Eq. 1).

t then acts to move the coordinates from the starting control

point (P0) to the ending control point (P3). The additional

two control points that are not on the curve provide a

‘‘pull’’ on the curve to produce continuous, third-order

curves. For two-dimensional Bezier curves, there is an

equation for the x coordinate values (Eq. 2) and a separate

equation for the y coordinate values (Eq. 3).

Fig. 2 Stages of developing a niche model for tamarisk in the

western USA. In all graphs, the vertical axis is the minimum

temperature of the coldest month, and the horizontal axis is the annual

precipitation while the red areas in the histogram represent the most

common combination of the environmental parameters with green

being less common. a A two-dimensional histogram of the occurrence

points with black being individual points and white being the highest

density of points. b A density surface for the occurrences with the

occurrences overlaid. c The density surface without occurrences.

d Contour lines added to the density surface at 10 and 90 %. e A

niche model with one control point at the center of the inner contour

line and four points around the outer contour line. f An optimized

model
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B tð Þ¼ ð1� tÞ3P0þ3ð1� tÞ2tP1þ3 1� tð Þt2P2þ t3P3 ð1Þ

X tð Þ¼ ð1� tÞ3X0þ3ð1� tÞ2tX1þ3 1� tð Þt2X2þ t3X3 ð2Þ

Y tð Þ¼ ð1� tÞ3Y0þ3ð1� tÞ2tY1þ3 1� tð Þt2Y2þ t3Y3 ð3Þ

Bezier curves within HEMI are specifically designed to

provide curvilinear envelopes defined by control points on

the curve. A set of Bezier curves are connected to form

a complete polygon with the two end points connecting

the curves (which are not really part of the curve)

effectively removed, so they do not influence the envelope.

Mathematically, if a Bezier curve is defined by four points,

P0 before the curve, P1 and P2 as the end points of the curve,

and P3 beyond the curve, then slope at P1 is then defined by

the slope of a line through P0 and P2 (S1) while the slope at P2

is defined by a line through P1 and P3 (S2). Solving for the

slopes and substituting them into the original Bezier function

(Eq. 1) gives a new Bezier curve function (Eq. 4) with two

functions for computing the third- and second-order factors

(Eqs. 5 and 6). The final result is a single continuous curve

with control points that can be placed automatically or

manually. HEMI has the ability to produce envelopes with

more than four points, but we found that the additional points

did not improve the model performance.

B tð Þ ¼ at3 þ bt2 þ S1t þ P1 ð4Þ
a ¼ 2 P1 � P2ð Þ þ S1 þ S2 ð5Þ
b ¼ 3 P2 � P1ð Þ � 2S1 � S2 ð6Þ

To complete the surface, a point at the optimal

environment conditions within the envelope was set to one

while the boundary of the niche envelope was set to zero

(Fig. 3). The transition between these two values was

controlled by a traditional Bezier curve with a sigmoidal

shape (Fig. 4). The shape of the curve used for this study was

based on the premises that (1) changes in species response to

environmental change near the optimal environmental

conditions are small and (2) the area along the boundary

may include microhabitats that the environmental data are

unable to capture.

Habitat suitability maps in geographic space were pro-

duced by extracting the environmental predictor values for

each pixel and determining where pixels fall within envi-

ronmental space in relation to the niche envelope. Pixels

falling outside the model would be set to zero while those

at the center of the niche would be set to one. Values along

the contours of the model were given values based on the

transition curve (Fig. 4).

Visualizing the Niche

For habitat suitability models, the ability to view the

environmental niche defined by the model is important for

model generation and evaluation (Elith and Graham 2009).

HEMI and BioMapper provide the ability to view the niche

model in environmental space. To view the environmental

niche for the other modeling methods, we created synthetic

environmental layers based on the full range of values of

the environmental layer. One layer changed vertically for

one predictor variable while the other was changing hori-

zontally for the second predictor variable. The models were

Fig. 3 A sample niche envelope in environmental space where the

blue areas are marginal habitat and the red area represents optimal

habitat. Four control points at the edges control the shape of the

model. These control points and the center point can be moved by the

modeler to alter the shape of the environmental space model

Fig. 4 The interpolation curve between the center of the niche and

the boundary is controlled by traditional Bezier control points. The

starting point on the left represent the values at the optimal habitat, or

1, with the ending point on the right representing the boundary of

habitat, or zero. The two additional points control the shape of the

curve but were fixed at y = 1, x = 0.5 for the first point and y = 1,

x = 0.5 for the second point for this study
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applied to the synthetic layers to generate a visual of the

niche model in environmental space (Elith and Graham

2009).

Study Sites

We tested HEMI, BioClim, BioMapper, and Maxent within

the western USA where tamarisk habitat suitability has

been modeled successfully in the past (Jarnevich and others

2011). We defined the western USA to include the states

from North Dakota south to Texas and west to the Pacific

Ocean. Tamarisk infests over one million acres in North

America (Brotherson 1987) and is currently the third most

frequently occurring woody riparian plant in the western

USA (Friedman and others 2005).

Occurrence Data

Tamarisk presence points were obtained from multiple

independent sources including data available from the

National Institute of Invasive Species Science (www.niiss.

org). We used 11,159 presence points that were freely

available and are the same as those used by Jarnevich in

2001, with the exception of the Kerns dataset, (Jarnevich

and others 2011), randomly divided into 7,814 training

points and 3,345 test points.

Environmental Variables

To develop our models, we selected two environmental

predictors identified as significant in previous studies:

annual temperature and precipitation (Friedman and others

2005; Kerns and others 2009; Jarnevich and others 2011).

While additional variables may have provided a better

model, the goal of this study was to demonstrate the abil-

ities of HEMI rather than provide the optimal model. The

uncertainties within these predictors may affect the out-

come of the model (Soria-Auza and others 2010), but since

the primary purpose of this study was to compare outputs

from different methods using the same predictor variables,

these uncertainties could be ignored. We used annual

precipitation and minimum temperature of the coldest

month acquired from the WorldClim database v1.4 (Hij-

mans and Graham 2006).

Modeling Algorithms

We compared the HEMI model algorithm with three

commonly used habitat suitability model algorithms:

BioClim, BioMapper, and Maxent. All these model tech-

niques are correlative and do not require absence data. The

BioClim model (Busby 1986) operates by placing a series

of simple thresholds around each of the presence points for

each environmental variable to define the environmental

space occupied by a species, forming a rectangle in

N-dimensional space. Each pixel in the output layer is

ranked according to where its environmental characteristics

fall in relation to this hyper-rectangle to produce a habitat

suitability map. We used DIVA-GIS (www.diva-gis.org) to

implement BioClim (www.diva-gis.org/docs/DIVA-GIS5_

manual.pdf). We used BioClim’s default percentile (i.e.,

95 %) to develop our models, eliminating the most envi-

ronmentally extreme 5 % of the presence points.

BioMapper (Hirzel and others 2002) uses ecological

niche factor analysis (ENFA) to develop a model. This

approach compares the mean of the environmental vari-

ables at the presence points to the mean across the sampled

region, and produces marginality and specialization values

to define a species niche (Hirzel and others 2002; Hirzel

and Arlettaz 2003). Marginality indicates how different the

environmental conditions are where the species occurs

compared to the average environmental conditions avail-

able, while specialization values indicate how restricted the

environmental conditions are where the species occurs

compared to the range of environmental conditions avail-

able. We used the default median algorithm. The geometric

mean algorithm is more similar to how HEMI calculates

the realized niche, but could not be used as the software

crashed repeatedly due to the large dataset.

Maxent uses maximum entropy modeling and back-

ground points representing the available environment to fit

a combination of linear and second-order polynomials to a

dataset (Phillips and others 2006). We used version 3.3.3e

with the default settings except we increased the maximum

iterations to 5,000 to allow it to reach convergence and

restricted background point selection to US counties that

contained tamarisk presence locations to decrease sampling

bias effects. We also used the multidimensional environ-

mental similarity surface (MESS) analysis in Maxent to

highlight locations with novel environments compared to

sampled environments used to develop the model.

Evaluation

To compute the same measures of model predictive capa-

bility across all the modeling approaches examined, we

computed AUC from the predicted habitat map and a set of

occurrence points. AUC is typically computed by moving a

threshold from one to zero and measuring the proportion of

points that are true presences against the proportion of

points that are true absences. Since we did not use absence

points, we computed the AUC based on the proportion of

the sample area that was contained within the environ-

mental envelope versus the number of occurrences that

were contained within the environmental envelope (Fig. 5).

This calculation is performed directly on a histogram of the
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environmental factors, using the number of occurrences

found for each unique combination of environmental fac-

tors against the number of locations in the sample area that

contain the same environmental factors. This keeps the

model from being biased toward environmental conditions

that are widespread versus those that are rare.

We withheld a random 30 % of the data for testing and

used the other 70 % to train the models. AUCs were

computed for both the train and test data. We ran additional

models using HEMI to see whether manually editing the

model in environmental space improved model results.

We also used an independent dataset of estimated

acreage of tamarisk at the quarter quad level from a survey

of county weed coordinators by the Western Weeds

Coordinating Committee to evaluate the models using the

PresenceAbsence library in R v2.14.2. To evaluate model

performance, we calculated the sensitivity equals speci-

ficity threshold value (where the chance of correctly pre-

dicting an occurrence is the same as the chance of correctly

predicting an absence) to calculate binary prediction maps

(suitable and unsuitable habitat). These were used to cal-

culate percent correctly classified, sensitivity, specificity,

and Cohen’s kappa. We also calculated the AUC vales for

the independent dataset.

Akaike information criterion (AIC) was computed for

each model against the training dataset. This was com-

pleted by treating each of the model outputs as a proba-

bility surface and multiplying the modeled probability of

each occurrence together to obtain an overall likelihood

(Warren and Seifert 2011). AIC was then computed in the

traditional manner. These calculations were executed in

BlueSpray. We should note that while the same dataset was

used to compute AIC, Maxent uses an internal random

selection of background points, which will change the AIC

values for each model run. We also calculated a Spear-

man’s rank correlation coefficient in BlueSpray to evaluate

the level of agreement between each pair of predicted

suitabilities.

Results

HEMI Performance

HEMI successfully created a model for habitat suitability

of tamarisk using a fundamentally different modeling

approach based on Bezier curves. The environmental space

available in the western USA generally included areas with

relatively low precipitation and moderate low temperature

environmental conditions (Fig. 1); tamarisk appears to

prefer drier regions of the western USA. The occurrence

points overlaying this environmental space show first that

the occurrence data are not continuous, with one large

concentration of occurrences at about a minimum tem-

perature of -20 �C and two smaller concentrations at

lower temperatures (Fig. 1). That the occurrence data are

non-continuous could be due to environmental conditions

not being prevalent, tamarisk not yet invading these areas,

or certain environmental conditions not being sampled as

intensively as others.

The four models covered similar areas of environmental

space, but appear different when examined in the envi-

ronmental space (Fig. 6). The automated HEMI model

produced geographic maps that visually appear similar to

the existing approaches (Fig. 7). Maxent produced the

highest test AUC (0.77), while HEMI had the second

highest test AUC (0.75) followed by BioMapper (0.74) and

BioClim (0.67). The manually created HEMI model

included all of the available occurrence points in envi-

ronmental space and produced a map that predicted tam-

arisk over a wider area (test AUC = 0.73; Table 1; Fig. 8).

BioClim and HEMI were the most parsimonious models.

HEMI required one control point for the center of the niche

and four control points describing the boundary of the

niche. Since there were two environmental predictor layers,

two values were required for each point resulting in ten

parameters to fully represent the niche model. The Maxent

output file containing the coefficients included 182

parameters. BioClim uses a minimum, 5, 95 %, and a

maximum parameter for each environmental layer giving

eight parameters for the two environmental layers used in

this study (Busby 1986). BioMapper uses a grid of 25 9 25

values for the model resulting in 625 parameters (Hirzel

and others 2002).

Fig. 5 An illustration of how area under the curve (AUC) was

computed. AUC is computed by finding the area within the model as a

threshold is changed from 1 (very little of the model) to near 0 (the

entire model). The proportion of the number of occurrences within the

modeled area is plotted versus the proportion of the sample area

within the modeled area
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The independent quarter quad data evaluation produced

AUC values somewhat lower than predicted from the

training and test datasets, but following the same trend as

before (Table 2). The automated HEMI model had the

lowest AIC value (98190) followed by Maxent (102297)

and the manually edited HEMI model (102457) (Table 1).

In terms of the Spearman’s correlation evaluation, BioClim

and BioMapper had the most similar predictions

(P = 0.82) and Maxent and BioClim had the most dis-

similar predictions. HEMI’s predictions agreed the most

with BioMapper (P = 0.81) and agreed the least with

Maxent (P = 0.75; Fig. 9).

Fig. 6 Predicted habitat

suitability (displayed in terms of

potential density in

environmental space) for

tamarisk within the western

USA for a HEMI, b BioMapper,

c BioClim, and d Maxent

models

Fig. 7 Predicted suitable

habitat (displayed in terms of

potential habitat suitability) for

tamarisk in the western USA

with a HEMI, b BioMapper,

c BioClim, and d Maxent

modeling approaches
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Discussion

The HEMI was able to model potential species habitat by

using relatively simple Bezier functions to create envi-

ronmental niche envelopes. This framework allowed

explicit visualization and modification of the species’

environmental niche space. All of the models, except

BioClim, were within 4 % of each other when AUC was

used as a comparative metric. HEMI produced the lowest

AIC values and was able to achieve this with an order-of-

magnitude fewer parameters than Maxent and BioMapper

(Table 1). Since all of the performance measures were

within 5 % of each other for HEMI, Maxent, and BioM-

apper, HEMI’s greater parsimony may be its primary

advantage.

The performance of HEMI compared to more compli-

cated modeling algorithms is surprising and bears further

examination. HEMI uses a series of Bezier functions to

describe the niche space of a species and produce a habitat

suitability model. Bezier curves provide continuous model

surfaces with an order-of-magnitude fewer parameters than

some other methods. However, since AUC is computed

without explicitly accounting for the number of parameters

in the model, it appears that simple curves may actually

reflect a more accurate way to describe species distribution

in environmental niche space. Our results highlight the

difficulty in comparing existing presence-only habitat

suitability models and suggest that perhaps new metrics are

needed for presence-only modeling algorithms that con-

sider model fit, number of parameters (parsimony), niche

theory, and even expert knowledge in model evaluation.

The BioClim’s ‘‘box-model’’ approach is apparent in the

visualization of the niche (Fig. 6). This approach included

only eight parameters. BioMapper produced a relatively

continuous model but used 625 parameters. Both BioM-

apper and HEMI produced niche models with the relatively

continuous surfaces that might be expected from ecological

theory for plant species (Fig. 6).

The Maxent model produced a higher AUC value

(though HEMI was within 0.02 and BioMapper within

0.03), and its map more closely modeled the data provided,

including the Missouri River corridor into Montana as

potential tamarisk habitat. This result, combined with the

larger number of parameters for Maxent, may be an indi-

cation of over-fitting the data, especially when using the

default settings (Anderson and Gonzalez 2011). HEMI

provided a simpler model with fewer parameters but may

be under-fitting the data. Both Maxent and HEMI allow the
Table 1 Area under the curve (AUC) values (i.e., training and test

datasets), the number of parameters, and estimated AIC values for

each model

Method Train

AUC

Number of

parameters

Test

AUC

AIC

HEMI

automatic

0.75 10 0.76 98,190

HEMI edited 0.73 10 0.73 102,457

BioClim 0.67 8 0.68 103,752

BioMapper

median

0.74 625 0.72 103,606

Maxent 0.77 182 0.78 102,297

AIC values were completed based on the test dataset

Fig. 8 The edited model from

HEMI showing the model in

environmental space on the left

and geographic space on the

right

Table 2 Quarter quad tamarisk survey evaluation of models includ-

ing the calculated sensitivity equals specificity threshold used to

calculate the other metrics, the percent correctly classified (PCC),

sensitivity, specificity, Cohen’s kappa, and area under the curve

(AUC)

Method PCC Sensitivity Specificity Kappa AUC

HEMI automatic 66 0.66 0.66 0.33 0.70

HEMI edited 63 0.64 0.62 0.27 0.66

BioClim 58 0.59 0.57 0.16 0.62

BioMapper median 64 0.64 0.64 0.28 0.67

Maxent 65 0.65 0.64 0.30 0.70
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ability to change the complexity of the envelopes created,

and additional research into the effects of varying the set-

tings for both approaches is warranted.

The manually created HEMI model has a larger extent

in both environmental and geographic space and a slightly

lower AUC of 0.73 compared to the automated model’s

AUC of 0.75. The manually created model may over-pre-

dict the potential habitat of tamarisk. However, since

tamarisk is a riparian plant and our environmental layers

are at 1 km, there may be areas where tamarisk is surviving

in small drainages that are poorly represented in the envi-

ronmental data. Over-predicting the habitat can help guide

field monitoring efforts to ensure that areas where invasive

species may occur in microhabitats are monitored.

Regardless, HEMI provides the user with control on how

well to fit the data to modify the model based on expert

knowledge and the needs of their application. As an

additional note, HEMI is an interactive program allowing

the user to modify models in environmental space and then

visualize a potential habitat in geographic space in a few

seconds.

The question of whether these types of models follow

what would be expected from the physiological require-

ments of a species could only be explained by large-scale

experiments to determine the environmental needs of each

species being modeled. The logistics of these experiments,

including the varieties of genotypes that would be required,

make these types of experiments impossible. There is also

a question as to whether these experiments would capture

the complexities of a natural landscape. Instead, we are

using field data to develop models of the environmental

needs of species. The field data will have its own set of

problems including uncertainty and bias. We feel the best

we can do at this stage in the evolution of these models is

to strive to develop approaches that create models that

match current ecological theory. The visualizations pro-

vided by HEMI allowed us to gain additional insight into

the environmental needs of tamarisk and also raised

questions about our field data.

HEMI was built to create simple models using Bezier

surfaces with control points. This limits HEMI to contin-

uous environmental variables such as temperature and

precipitation, but does not allow for the use of categorical

variables such as soil type. This could be overcome by

modeling each segment of a discontinuous variable and

then combining results. While this study used only two

environmental variables, HEMI supports up to five. Future

extensions to HEMI are planned to allow for the incorpo-

ration of uncertainty from occurrences and environmental

layers and addition of other algorithms to determine the

optimal niche model. While this is the first introduction of

HEMI, we hope to model a variety of species in different

geographic regions with different datasets to further

investigate its applicability.
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